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I.Introduction 

Today, the theory of functions with multiple complex variables is a rapidly developing 
sphere. French mathematician Henri Poincaré proved in the late 19th century that the unit 
sphere and polydoira were not bigolomorphic. Therefore, in this sphere, the Monographs of the 
famous mathematician of the United States of America Walter Rudin on polidoira on the theory 
of functions, as well as on the theory of functions in the unit sphere, have an important 
significance. This article included the Cauchy core, the invariant integral of Poisson, in the 
polisher, which is the cartesian product of spheres. Polisher automorphisms are included. In the 
polisher, an integral image of a function that is a holomorphic is obtained. 
 
II.Main Part 

 In this article, we will first talk about the unit sphere automorphisms, the center of which is 
at the beginning of the coordinates in cN.Then we enter the receipts of the automorphisms of BM-
unit polishar and SM-unit shartor , BM-unit prove the theorem on the integral image of a function 
that is holomorphic in a polishar. 

1-§.BM-unit polisher and Sm-unit chartor. 
Suppose a unit sphere whose center in B Cm is at the beginning of the coordinates.  B 

= , B = , ( )a z −  B self-reflection of the sphere in the following form: 
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Bn -unit polishar and Sn -unit sharters are partial sets of cmn, and B⊂Cm is defined quidacically 
through N Cartesian multiples of unit spheres and C-unit spheres 
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In general, the polisher can be viewed as the N Cartesian multiple of the optional radial and 
optional center spheres in cmn. 

Shartor Sn Recall n>1 at Sn pshartor Bn forms a smaller part of the boundary of the polisher, 
but this part is of great importance because it is the Shilov boundary. 

 automorphismlary  
Originally something from Bn 
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it is a Holda reflection of 


  cmn reflection to golomorphic reflection. From 

 nBdaa 1  this it seems to be. At ,1,1 == mn  (2) the unitC  in the formula comes to the 

automorphism of the circle. the unit in formula n=1, m = k (2) ∁k comes to the automorphism of 
the sphere 

 automorphismlary: 









== 
=

nizCzzzzB
m

j
j

imnnn 1,1||:),...,,(
1

221
   the group of automorphisms is 

described as follows. Such points are 
1 2, ,..., ma a aB and   signs  1,2,...,m  the 
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Where     i=1,n is the real numbers.   
    In n>1, this replacement can be used to replace wy→Wµ  extenders. Where μ=μ (γ)       

{1,2,…,n}  
  and a chivalrous reflection upon his face. 

1-theorem. unit polyshar's inventive aphtomorphism (3)bludges in curinish or (3) from 

 bludges replacement of stirrers in curinish. See [9]. 
 

2-§. -integral representation of a function that is holomorphic in a unit polisher 

       1- definition.   
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2- definition:  
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Poisson's invariant core in Bn is called.  
 From the above definition it is seen that the Poisson and Cauchy nuclei can be connected 

using the following formula. 
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The Poisson integral ][ fP , for (in this )(1 Lf  nBz ), is defined as follows. 
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                                   (7) 

 on the scale will be the Poisson 
integral. 

3-description. A( ) through f:   we designate an 
algebra that is continuous. 

 

1- theorem. If f  if, then 
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equality is appropriate for all z . 
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2- Theorem. If F(z)  if, then 
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equalit . 
 

Conclusion 
 As a conclusion, it can be said that the analysis of research in this area has shown that to 

date, the article has not sufficiently studied the question of the Cauchy core in a polisher with a 
Cartesian multiple of spheres, the invariant integral of Poisson , polisher automorphisms , the 
integral image of a function with a golomorphic in a polisher.There are a number of issues waiting 
for its solution in this SoC.For example, in the polisher stands the theory of separat M-harmonic 
functions. 
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